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Abstract. In this paper, we discuss about spectrum properties of self-adjoint operator. Relation 

between self-adjoint operator and normal operator is used to show that the spectrum of self-

adjoint operator is subset of ℝ. Furthermore, by using norm properties of bounded-linear operator 

and real polynomial we derived the relation between spectrum and norm of operator polynomial.  

1.  Introduction 

Functional analysis is a branch of mathematics. The concept of eigenvalues of matrix play fundamental 

role in functional analysis. Linear operators in complex vector spaces always have a representation 

matrix, so that the spectral theory in finite dimension vector space equivalent with the spectral theory of 

the matrix. In other side, linear operators in infinite dimension complex vector spaces do not have a 

representation matrix. The notion of the eigenvalue was generalized from finite dimension of vector 

space to infinite dimension. It means, the set of Eigen values of a matrix was generalized to be spectrum 

of a linear continuous operator. 

This shows how important spectrum is. This is supported by Mendelson and Tomberg which states 

that some discussion about spectrum will be necessary later in the development of functional analysis 

studies [1]. 

 

Definition 1.1 [2] 

If 𝑉 and 𝑊 are vector spaces, a mapping 𝐴: 𝑉 → 𝑊 is said to be linear in case 

i. 𝐴 is additive : 𝐴(𝑥 + 𝑦) = 𝐴𝑥 + 𝐴𝑦, for all 𝑥, 𝑦 ∈ 𝑉. 

ii. 𝐴 is homogeneous: 𝐴(𝜆𝑥) = 𝜆(𝐴𝑥) for all 𝑥 ∈ 𝑉 and scalar 𝜆. 
Definition 1.2. 

If 𝑉 and 𝑊 are normed spaces, a linear mapping 𝐴: 𝑉 → 𝑊 is said to be bounded if there is 𝑐 ∈ ℝ such 

that ‖𝐴𝑥‖ ≤ 𝑐‖𝑥‖ for all 𝑥 ∈ 𝑉. 
There is a theorem about the relation between linear continuous mapping and bounded linear 

mapping. The theorem as following: 

Theorem 1.1. [2] 

Let 𝑉 and 𝑊 be normed spaces, 𝐴: 𝑉 → 𝑊 a linear mapping. The following condition on A are 

equivalent: 

i. 𝐴 is a continuous mapping. 

ii. 𝐴 is continuous at some point 𝑥0 ∈ 𝑉. 
iii. 𝐴 is continuous at 𝜃 ∈ 𝑉. 

iv. {‖𝐴𝑥‖: ‖𝑥‖ ≤ 1} is bounded set of real numbers. 
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v. There exists a constant 𝑀 ≥ 0 such that ‖𝐴𝑥‖ ≤ 𝑀‖𝑥‖ for all 𝑥 ∈ 𝑉. 

In view of this theorem, continuous linear mappings between normed spaces are also bounded linear 

mappings. We know that a mapping between normed spaces is called operator. Furthermore, in this 

paper bounded linear mapping or continuous linear mapping are called bounded operator. 

Let 𝐻 be Hilbert space. A collection of bounded operator 𝐴: 𝐻 → 𝐻 denote by 𝐵(𝐻). Note that, for 

every bounded operator 𝐴: 𝐻 → 𝐻 there is 𝐴∗: 𝐻 → 𝐻 operator such that for every 𝑥, 𝑦 ∈ 𝐻 we 

have〈𝐴(𝑥), 𝑦〉 = 〈𝑥, 𝐴∗(𝑦)〉. Furthermore, 𝐴∗ is called adjoint operator.  

Definition 1.3. [3] 

An operator 𝐴 ∈ 𝐵(𝐻) is said to be normal in case 𝐴∗𝐴 = 𝐴𝐴∗/ 

Definition 1.4. [3] 

Operator 𝐴 ∈ 𝐵(𝐻) such that 𝐴 = 𝐴∗ is called self-adjoint operator. 

2.  Discussion 

Definition 2.1 [4]  

Suppose  𝐴 ∈ 𝐵(𝐻). The spectrum of 𝐴 denoted by 𝜎(𝐴) is defined by 

𝜎(𝐴) = {𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 𝑛𝑜𝑡 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒} (1) 

 

Furthermore, complex numbers 𝜆 is called proper values for  operator 𝐴 if there is 𝑥 ≠ 𝜃 such that 

𝐴𝑥 = 𝜆𝑥. Equivalently, 𝜆 ∈ ℂ is proper value for operator 𝐴 if and only if there is 𝑥 ≠ 𝜃 such that 
‖𝐴𝑥 − 𝜆𝑥‖ = 0. From this properties, we can define approximate proper value or 𝐴𝑃-value for operator 

𝐴 as a collection of 𝜆 such that for every 𝜀 > 0 there exists 𝑥 ∈ 𝐻, ‖𝑥‖ = 1 such that ‖𝐴𝑥 − 𝜆𝑥‖ < 𝜀. 
Suppose that 𝑥 ∈ 𝐻, ‖𝑥‖ ≠ 0 we can define 

𝑥′ =
𝑥

‖𝑥‖
  (2) 

 

thus we have ‖𝑥′‖ = 1, therefore 

‖𝐴𝑥′ − 𝜆𝑥′‖ < 𝜀 (3) 

‖𝐴
𝑥

‖𝑥‖
− 𝜆

𝑥

‖𝑥‖
‖ < 𝜀 (4) 

‖𝐴𝑥 − 𝜆𝑥‖ < 𝜀‖𝑥‖ (5) 

 

Furthermore, we can defined Π(𝐴) = {𝜆 ∈ ℂ: 𝜆 approximate proper value for operator 𝐴} is said 

to be approximate point spectrum for operator 𝐴 or 𝐴𝑃-spectrum.- 

 

Theorem 2.1  

If 𝐴 ∈ 𝐵(𝐻), then Π(𝐴) ⊆ 𝜎(𝐴). 
Proof. Suppose that 𝜆 ∉ 𝜎(𝐴), thus 𝐴 − 𝜆𝐼 invertible. Consequently, for every 𝑥 ∈ 𝐻 we have  

‖𝑥‖ = ‖(𝐴 − 𝜆𝐼)−1(𝐴 − 𝜆𝐼)𝑥‖ ≤ ‖(𝐴 − 𝜆𝐼)−1‖‖(𝐴 − 𝜆𝐼)𝑥‖. (6) 

Therefore, for every 𝑥 ∈ 𝐻 we have ‖𝐴𝑥 − 𝜆𝑥‖ ≥ 𝜀‖𝑥‖ for 𝜀 =
1

‖(𝐴−𝜆𝐼)−1‖
. Briefly, 𝜆 ∉ Π(𝐴).   

  

Theorem 2.1 show that Π(𝐴) ⊆ 𝜎(𝐴) for every 𝐴 ∈ 𝐵(𝐻). It will be valid for the contrary if 𝐴 is 

normal operator. It can be seen on theorem 2.2 as below: 

Theorem 2.2.  

If 𝐴 ∈ 𝐵(𝐻) normal operator, then Π(𝐴) = 𝜎(𝐴). 
Proof. It follows from Theorem 2.1 that Π(𝐴) ⊆ 𝜎(𝐴). So, we need only prove 𝜎(𝐴) ⊆ Π(𝐴). Let 𝜆 ∉
Π(𝐴), then there exists 𝜀 > 0 such that for every 𝑦 ∈ 𝐻 we have 

‖𝐴𝑦 − 𝜆𝑦‖ ≥ 𝜀‖𝑦‖. (7) 

Since 𝐴 is normal operator, it follows that 𝐴 − 𝜆𝐼 be normal operator. Consequently, for every 𝑦 ∈ 𝐻, 
we have 

‖𝐴∗𝑦 − 𝜆𝑦‖ ≥ 𝜀‖𝑦‖. (8) 
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Suppose that 𝑦 be orthogonal vector of the range of 𝐴 − 𝜆𝐼, therefore for every 𝑥 ∈ 𝐻 it follows 

〈(𝐴 − 𝜆𝐼)𝑥, 𝑦〉 = 0. Furthermore, we have 〈(𝐴∗ − �̅�)𝑥, 𝑦〉 = 0. Consequently, since 

0 = ‖𝐴∗𝑦 − 𝜆𝑦‖ ≥ 𝜀‖𝑦‖ (9) 

it follows that 𝑦 = 0. On other words, (𝐴 − 𝜆𝐼) is invertible and therefore  𝜆 ∉ 𝜎(𝐴).   

 

Beside above properties, there is some other properties of bounded operator. We can look on  the 

following theorem: 

Theorem 2.3.  

If 𝐴 ∈ 𝐵(𝐻) such that ‖𝐼 − 𝐴‖ < 1, then 𝐴 is invertible. 

Proof. Define 𝛼 = 1 − ‖𝐼 − 𝐴‖,  it follows 𝛼 > 0. Suppose 𝑥 ∈ 𝐻, then  

‖𝐴(𝑥)‖ = ‖𝑥 − (𝑥 − 𝐴(𝑥))‖ ≥ ‖𝑥‖ − ‖𝑥 − 𝐴(𝑥)‖ = (1 − ‖𝐼 − 𝐴‖)‖𝑥‖ = 𝛼‖𝑥‖. (10) 

Therefore, 𝐴 is bounded below. Define 𝑀 = {𝑦 ∈ 𝐻|𝑦 = 𝐴(𝑥), 𝑥 ∈ 𝐻} and 𝛿 = inf{‖𝑥 − 𝑦‖|𝑥 ∈
𝐻, 𝑦 ∈ 𝑀}. We will show that 𝛿 = 0. Suppose otherwise, 𝛿 > 0. Since 1 − 𝛼 < 1, there exists 𝑥 ∈ 𝐻 

and 𝑦 ∈ 𝑀 such that ‖𝑥 − 𝑦‖ <
𝛿

1−𝛼
. It follows that 

𝛿 ≤ ‖(𝑥 − 𝑦) − 𝐴(𝑥 − 𝑦)‖ ≤ ‖𝐼 − 𝐴‖‖𝑥 − 𝑦‖ = (1 − 𝛼‖𝑥 − 𝑦‖) < 𝛿.  (11) 

It means, 𝛿 < 𝛿 which is a contradiction. Therefore, we can conclude that 𝛿 = 0.                                 
 

Theorem 2.4.  

Let 𝐴 ∈ 𝐵(𝐻), 𝜆 ∈ 𝜎(𝐴) then |𝜆| ≤ ‖𝐴‖. 

Proof. Suppose that 𝜆 > ‖𝐴‖. It was seen from Theorem 2.3, it follows 𝐼 −
𝐴

𝜆
 is invertible. Consequently, 

𝐴 − 𝜆 is invertible. That is 𝜆 ∉ 𝜎(𝐴).                     

 

Theorem 2.5. 

Let 𝐴 ∈ 𝐵(𝐻) self-adjoint operator, then 𝜎(𝐴) ⊆ ℝ. 
Proof. Suppose 𝜆 ∉ ℝ, thus for every 𝑥 ≠ 0 we have 

|𝜆 − �̅�|‖𝑥‖2 > 0 ⟺ |�̅� − 𝜆 |〈𝑥, 𝑥〉 > 0 ⟺ 〈(|�̅� − 𝜆 |)𝑥, 𝑥〉 > 0 ⟺ |〈�̅�𝑥, 𝑥〉 − 〈𝜆𝑥, 𝑥〉| > 0 (12) 

Moreover, we have |〈(𝐴 − 𝜆)𝑥, 𝑥〉 − 〈(𝐴 − �̅�)𝑥, 𝑥〉| > 0. Consequently, 

2‖𝐴𝑥 − 𝜆𝑥‖‖𝑥‖ > 0 (13) 

That is ‖𝐴𝑥 − 𝜆𝑥‖ > 0, for every 𝑥 ∈ 𝐻. Since 𝐴 self-adjoint operator, then 𝐴 is normal operator. 

Moreover, by Theorem 2.2 we have 𝑥 ∉ 𝜎(𝐴).          

 

Theorem 2.6.  

Let 𝐴 ∈ 𝐵(𝐻) and 𝑝 is polynomial, then  

𝜎(𝑝(𝐴)) = 𝑝(𝜎(𝐴)) = {𝑝(𝜆)|𝜆 ∈ 𝜎(𝐴)}. (14) 

Proof. Suppose that 𝜆0 ∈ ℂ. We know that 𝜆 = 𝜆0 is roots of 𝑝(𝜆) = 𝑝(𝜆0),  moreover there exists 𝑞 

polynomial such that 𝑝(𝜆) − 𝑝(𝜆0) = (𝜆 − 𝜆0)𝑞(𝜆). Similarly, we have 

𝑝(𝐴) − 𝑝(𝜆0) = (𝐴 − 𝜆0)𝑞(𝜆). (15) 

Since 𝜆0 ∈ 𝜎(𝐴), it follows 𝐴 − 𝜆0 is not invertible. Therefore, 𝑝(𝐴) − 𝑝(𝜆0) is not invertible, that is 

𝑝(𝜆0) ∈ 𝜎(𝑝(𝐴)). Consequently, 𝑝(𝜎(𝐴)) ⊆ 𝜎(𝑝(𝐴)). Moreover, suppose 𝜆0 ∈ 𝜎(𝑝(𝐴)) and 

𝜆1, 𝜆2, … , 𝜆𝑛 roots of  𝑝(𝜆) = 𝜆0. Therefore, we have  

𝑝(𝐴) − 𝜆0 = 𝛼(𝐴 − 𝜆1)(𝐴 − 𝜆2) … (𝐴 − 𝜆𝑛), (16) 

for scalar 𝛼 ≠ 0. Since 𝜆0 ∈ 𝜎(𝑝(𝐴)), then there is at least one  𝑗 with 1 ≤ 𝑗 ≤ 𝑛 such that 𝐴 − 𝜆𝑗  is not 

invertible. For this 𝑗, 𝜆𝑗 ∈ 𝜎(𝐴) and 𝑝(𝜆𝑗) = 𝜆0, therefore  𝑝(𝜆𝑗) ∈ 𝜎(𝑝(𝐴)). Consequently, 𝑝(𝜎(𝐴)) ⊆

𝜎(𝑝(𝐴)). So, we can conclude that 𝑝(𝜎(𝐴)) = 𝜎(𝑝(𝐴)) = {𝑝(𝜆)|𝜆 ∈ 𝜎(𝐴)}.  

 

As theorem 2.5, the following theorem give the properties of spectrum of self-adjoint operator. 

Theorem 2.7.  

Let 𝐴 ∈ 𝐵(𝐻) self-adjoint operator then ‖𝐴‖ = sup{|𝜆|: 𝜆 ∈ 𝜎(𝐴)}. 
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Proof. Define 𝛼 ≔ sup{|𝜆|: 𝜆 ∈ 𝜎(𝐴)}. By Theorem 2.4 we have 𝛼 ≤ ‖𝐴‖. Furthermore, we have to 

prove that ‖𝐴‖ ≤ 𝛼. It can prove by using ‖𝐴‖2 ∈ Π(𝐴2). For every 𝑥 ∈ 𝐻 we have 

‖𝐴2(𝑥) − 𝜆2𝑥‖2 = ‖𝐴2(𝑥)‖ − 2𝜆2‖𝐴(𝑥)‖2 + 𝜆4‖𝑥‖2, (17) 

for 𝜆 ∈ ℝ. Let (𝑥𝑛) ⊆ 𝐻 be sequence of unity vector such that ‖𝐴(𝑥𝑛)‖ → ‖𝐴‖ for every 𝑛 → ∞ and 

𝜆 = ‖𝐴‖, then for 𝑛 → ∞ we have 

‖𝐴2(𝑥𝑛) − 𝜆2𝑥𝑛‖ ≤ (‖𝐴‖‖𝐴(𝑥𝑛)‖)2 − 2𝜆2‖𝐴(𝑥𝑛)‖2 + 𝜆4 = 𝜆4 − 𝜆2‖𝐴(𝑥𝑛)‖2 → 0. (18) 

Therefore, we have conclussion that ‖𝐴‖2 ∈ Π(𝐴2).             

   

From theorem 2.6 and theorem 2.7, we can derived the relation between spectrum and norm of 

operator polynomial as the following theorem. 

Theorem 2.8.  

Let 𝐴 ∈ 𝐵(𝐻) self-adjoint operator and 𝑝 be a real polynomial, then 

‖𝑝(𝐴)‖ = sup{|𝑝(𝐴)|: 𝜆 ∈ 𝜎(𝐴)}. (19) 

Proof. By using Theorem 2.7, for 𝐴 ∈ 𝐵(𝐻) self-adjoint operator we have ‖𝐴‖ = sup{|𝜆|: 𝜆 ∈ 𝜎(𝐴)}. 

Therefore, we get ‖𝑝(𝐴)‖ = sup{|𝜆|: 𝜆 ∈ 𝜎(𝑝(𝐴)) }. Based on Theorem 2.6,  

𝜎(𝑝(𝐴)) = 𝑝(𝜎(𝐴)) = {𝑝(𝜆): 𝜆 ∈ 𝜎(𝐴)}. (20) 

Furthermore, we obtained 

‖𝑝(𝐴)‖ = sup{|𝜆|: 𝜆 ∈ 𝑝(𝜎(𝐴))} = sup{|𝑝(𝐴)|: 𝜆 ∈ 𝜎(𝐴)}. (21) 

Conclusion 

The spectrum of self-adjoint operator is subset of ℝ. Self-adjoint operator has relation with real 

polynomial, for 𝐴 ∈ 𝐵(𝐻) self-adjoint operator and 𝑝 be a real polynomial, we have 

‖𝑝(𝐴)‖ = sup{|𝑝(𝐴)|: 𝜆 ∈ 𝜎(𝐴)}. 
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