BABI

PENDAHULUAN

1.1 Latar belakang

Tembaga merupakan salah satu logam ringan yang paling banyak digunakan. Selain karena melimpahnya di alam, hal ini juga disebabkan oleh sifat tembaga. Tembaga memiliki sifat luar biasa termasuk laju korosi yang lambat, konduktivitas termal dan listrik yang baik, relatif lunak dan mudah dikerjakan, misalnya saat cetak, ekstrusi, tarik, pengepresan, penempaan, dan penggulungan. Tembaga adalah logam yang diekstraksi dari biji butiran utama Copperpryites. Copperpryite adalah tanah pertambangan dimana tembaga bereaksi secara kimia dengan besi dan belerang [1].

Dan logam ini mempunyai kemurnian konduktivitas termal pada suhu 20°C sebesar 0,941 Cal/cm derajat/detik. Saat memurnikan tembaga untuk keperluan industri, seringkali terdapat unsur gas yang mempengaruhi berbagai sifat. Tembaga banyak digunakan dalam komponen dan produk listrik, peralatan rumah tangga, serta badan mobil dan pesawat terbang. Sedangkan tembaga dengan laju korosi rendah banyak digunakan untuk melapisi logam lain dengan laju korosi tinggi, seperti baja. Pelapisan tembaga pada baja dapat mengontrol lingkungan korosif baja, sehingga meningkatkan konduktivitas listrik dan termal baja[1].

Aluminium merupakan logam yang ringan, mempunyai ketahanan terhadap korosi yang baik, daya hantar listrik yang baik serta mempunyai sifat-sifat baik lainnya seperti sifat logam. Selain itu, aluminium juga memiliki sifat dapat dibentuk (wrought alloy), dimana paduan aluminium dapat dikerjakan atau diolah baik dalam pengerjaan kerja dingin maupun panas menggunakan simulasi dinamika molekuler. Jika aluminium dicampur dengan sejumlah kecil unsur lain, kekuatan dan kekerasannya akan meningkat, misalnya paduan aluminium dan tembaga[2].

Tembaga dan paduannya memiliki daya hantar termal dan listrik yang tinggi serta nilai ketahanan kontak yang cukup rendah. Aluminium dan paduannya memiliki daya hantar listrik yang tinggi, ketahanan korosi yang baik, dan harga yang murah [3]. Para peneliti sedang menyelidiki hubungan antara kedua bahan tersebut. Salah satu aplikasi penyambungan aluminium dan tembaga adalah sambungan bimetal. Kekuatan produk berbanding lurus dengan ketahanan korosi yang sangat baik dan konduktivitas tegangan tinggi. Diadaptasi dari [4] aluminium memiliki konduktivitas sebesar 238 W/m K dan tembaga memiliki konduktivitas sebesar 393 W/m K [5].

Paduan AlCu amorf telah menarik perhatian yang signifikan dalam beberapa tahun terakhir karena sifatnya yang unik, termasuk kekuatan tinggi, ringan, dan tahan korosi, sehingga cocok untuk berbagai aplikasi industri seperti konstruksi, kedirgantaraan, dan pengemasan [6]. Namun, transisi dari aluminium ke tembaga telah menimbulkan tantangan, termasuk ketahanan korosi yang buruk, proses yang singkat, kekerasan yang lebih tinggi, dan potensi pembentukan intermetalik CuAl yang berlebihan, yang dapat meningkatkan hambatan listrik dan mengurangi kekuatan ikatan mekanis [7]. Untuk mengatasi masalah ini, pemahaman yang komprehensif tentang hubungan antara komposisi Cu dan sifat mekanik paduan AlCu amorf sangat penting.

Simulasi dinamika molekuler merupakan suatu metode yang dapat digunakan untuk memprediksi sifat statik dan dinamik yang diturunkan langsung dari interaksi pada tingkat atom atau molekul. Mengingat belum ada alternatif lain yang dapat digunakan untuk menyelesaikan masalah ini dengan tingkat detail yang memadai, maka metode simulasi dinamika molekuler ini merupakan alternatif yang dapat digunakan dalam penelitian dan mekanika. Ada dua permasalahan utama dalam menggunakan metode simulasi dinamika molekul ini, permasalahan pertama adalah menentukan model energi potensial yang mengatur hubungan antar atom atau molekul yang berinteraksi satu sama lain dalam sistem. Berdasarkan model energi potensial inilah gaya-gaya yang mempengaruhi dinamika sistem dapat ditentukan. yang kedua adalah mengidentifikasi algoritma dan metode numerik yang cocok dan efektif untuk digunakan dalam menyelesaikan masalah dinamika yang kompleks ini [8].

Penelitian ini menggunakan metode simulasi dinamika molekuler untuk memodelkan interaksi antar atom. Penggunaan simulasi ini memungkinkan teramatinya reaksi antar atom dan pembentukan ikatan antar atom, sehingga dalam simulasi ini dapat diungkap mekanisme reaksi yang terjadi pada proses uji tarik dan tekan pada perpaduan AICu menggunakan metode simulasi dinamika molekuler. Pada tingkat molekuler, MD (dinamika molekuler) dapat menawarkan wawasan yang mendalam tentang dinamika proses reaksi antar atom dan mekanisme reaksi antar atom[9]. Karena itu penelitian ini bertujuan untuk bisa mengungkap lebih dalam ikatan-ikatan yang terbentuk selama dan setelah proses amorfisasi. Penelitian ini berhasil menggali informasi terkait bagaimana pengaruh konsentrasi AlCu, pengaruh laju pendinginan AlCu, perubahan ikatan yang terjadi dan sudut ikatan rata-rata yang terbentuk.

Kebanyakan penelitian tentang paduan AlCu masih berpusat pada material kristalin atau semi-kristalin. Penelitian yang berfokus pada paduan amorf AlCu, terutama melalui simulasi MD, masih sangat terbatas. Sebagian besar simulasi MD berfokus pada studi statis. Dinamika temperatur tinggi, tekanan, atau deformasi di bawah kondisi kompleks pada paduan AlCu amorf masih jarang dilakukan. Dan juga studi eksperimental telah menunjukkan bahwa presipitasi AlCu memperkuat material, tetapi detail kuantitatif tentang hubungan antara kadar Cu, distribusi atomik, dan kekuatan mekanis di paduan amorf belum banyak dieksplorasi.

1.2 Rumusan Masalah

Dari latar belakang yag sudah dijabarkan di atas, ada beberapa rumusan masalah sebagai berikut:

- 1. Bagaimana pengaruh konsentrasi Cu pada paduan AICu terhadap kekuatan tarik dan tekan?
- 2. Bagaimana perubahan struktur bahan paduan AlCu terjadi selama proses pembebanan tarik?

1.3 Tujuan Penelitian

Berikut beberapa tujuan dari penelitian ini, diantaranya:

- 1. Mengetahui sifat mekanik dari paduan alumunium dan tembaga terhadap kekuatan tekan dan tarik dengan simulasi dinamika molekuler
- 2. Menganalisis pengaruh struktur amorf pada paduan alumunium dan tembaga terhadap uji tarik dan tekan dengan simulasi dinamika molekuler

1.4 Batasan Masalah

Dengan adanya batasan masalah penelitian ini diharapkan terfokus terhadap tujuan permasalahan,

- 1. Penelitian ini penulis hanya akan mengkaji perpaduan alumunium dan tembaga dengan paduan komposisi 0%, 5%, 10%, 15%, dan 20%.
- 2. Uji tarik dan uji tekan yang di gunakan pada penelitian ini hanya mencakup metode simulasi dinamika molekuler
- 3. Ukuran supersel sistem simulasi adalah 10×10×10 sel satuan
- 4. Pada saat pengujian penulis hanya menggunakan angka temperatur 2500K sampai 300K
- 5. Uji tarik dan tekan pada penelitian ini hanya dilakukan dengan kecepatan arah pembebanan sumbu -z dengan laju 10¹⁰s⁻¹.

1.5 Manfaat penelitian

Berikut beberapa aspek manfaat penelitian ini yang dapat sebutkan, meliputi:

- 1. Dapat menganalisis mikrostruktur atau interaksi antar atom lebih dalam pada paduan alumunium dan tembaga dengan metode simulasi dinamika molekuler
- 2. Sebagai referensi mengenai proses uji tarik dan tekan paduan alumunium dan tembaga (*AICu*) amorf di masa yang akan datang terutama pada metode simulasi dinamika molekuler.